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Functional connectivity pattern altered of default mode network (DMN) is gaining more

attention as a potential noninvasive biomarker to diagnose incipient Alzheimer's disease.

However, the changed functional connectivity except for DMN, the longitudinal changes in

executive control network (ECN) and frontoparietal network (FPN) also has attracted wide

interest. Moreover, AD-related functional connectivity abnormalities within the DMN are

well replicated research, but the (increased/decreased and reduced) functional connec-

tivity in ECN and FPN weren't receive adequate attention. To address the above issues, in

this paper, we adopt sparse inverse covariance estimation (SICE) approach to investigate

the changed functional connectivity of ECN and FPN on the ADNI2 dataset. Our experi-

mental results indicate the left superior frontal gyrus (SFGmed.L) and left thalamus (THA.L)

regions of ECN has shown increased functional connectivity, the left anterior cingulate

(ACG.L) region of ECN has shown decreased functional connectivity. The Superior Parietal

Gyrus (SPG) regions and left paracentral lobule (PCL.L) of FPN has shown increased func-

tional connectivity, the left supramarginal gyrus (SMG.L) regions has shown decreased

functional connectivity in AD patients. On the other hand, the ACG.L regions in ECN, SMG.L

and left inferior parietal (IPL.L) in FPN have shown significantly reduced functional con-

nectivity. These results demonstrate that increased/decreased functional connectivity and

reduced functional connectivity not only within DMN, but also associated with ECN and

FPN. It also suggest that AD is associated with the characteristics of large-scale functional

networks, and these changed functional connectivity possibly as a potential noninvasive

biomarker to diagnose incipient Alzheimer's disease.
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1. Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative

disorder that accounts for approximately 50e80% of all de-

mentia cases, the main characteristics are cognitive decline,

irreversible memory loss, disorientation, and language

impairment. Early signs of AD include loss of short-term

memory function followed by a progressive decline in other

cognitive domains including language, attention, orientation,

visuospatial skills, executive function, as well as emotional

and behavioral disturbances. Ultimately, it will lead to loss of

memory and some of the functions. With both the proportion

of older people and the length of life increase throughout the

world, AD has nowbecome amajor public health concern. The

number of affected patients is estimated to triple and reaches

13.4 million, in the United States by the year 2050 (Mueller

et al., 2005). To prevent or delay the progression of AD, re-

searchers have focused on the search for a sensitive, nonin-

vasive, in vivo biomarker that would enable earlier, more

accurate clinical diagnosis, monitoring disease progression

and the effectiveness of therapeutic intervention (Dubois

et al., 2007; Fennema-Notestine et al., 2009; Galasko, 2005;

Thal et al., 2006). Recent from neuroimaging community

report, the functional connectivity of default mode network

(DMN) as a potential noninvasive biomarker to diagnose

incipient Alzheimer's disease was gain more attention.

Moreover, the changed functional connectivity except for

DMN, the other longitudinal changes functional networks has

attracted wide interest, e.g., Executive Control Network (ECN);

Frontoparietal Network (FPN). In neuroscience community

view, these functional connectivity networks (e.g., DMN, ECN)

may sometimes work together to perform tasks and the

changes functional connectivity of these functional networks

perhaps leading causes of morbidity (Godwin et al., 2017;

Littow et al., 2015). Therefore, it would be worthwhile to

explore abnormal functional connectivity of these functional

networks for AD diagnose.

Functional connectivity is defined as temporal correlations

between spatially distinct brain regions, and bymeasuring the

level of co-activation of resting-state Functional magnetic

resonance imaging (fMRI) time-series between brain regions

have revealed interesting new findings about the functional

connections of specific brain regions and local networks

(Friston, Frith, Liddle, & Frackowiak, 1993). These findings

have shown that AD subject's brain may have different con-

nectivity patterns from normal subject, and resting-state

functional connectivity was sensitive to functional brain

changes related to AD pathology across the clinical spectrum

(Damoiseaux, 2012). Functional connectivity change as a

biomarker of AD holds promising for guiding treatment before

the occurrence of significant functional impairment or irre-

versible neuronal damage (Franzmeier et al., 2017; Hohenfeld,

Werner,& Reetz, 2018; Mueller et al., 2005; Sui et al., 2015; Thal

et al., 2006). Therefore, exploring and detecting abnormal

functional connectivity of intrinsic connectivity networks

preserve a promising to diagnosis and treatment of AD (Yang

et al., 2011).

A large body of methods have been proposed to analyze

functional connectivity. These methods included pearson
correlation, partial correlation, mutual information, inde-

pendent component analysis (ICA), graphical model and

sparse representation methods (Lv et al., 2015; Wee, Yap,

Zhang, Wang, & Shen, 2014). Pearson correlation and partial-

correlation are also called region of interest (ROI) or “seed-

based” methods, and correlation method (Biswal, Zerrin

Yetkin, Haughton, & Hyde, 1995; Marrelec et al., 2006; Siegle,

Thompson, Carter, Steinhauer, & Thase, 2007; Worsley,

Charil, Lerch, & Evans, 2005) is one of the most frequently

application methods, any two brain regions of the time cour-

ses correlation, allows one to infer whether the regions are

functionally connected. Although, correlation-based methods

are used widely, these methods can only capture pairwise

information and cannot fully reflect the interaction among

multiple brain regions (Huang et al., 2010; Wee et al.,

2014).Furthermore, correlation cannot reveal anything about

causality or even whether connectivity was direct versus in-

direct (Marrelec et al., 2006; Smith et al., 2013). Due to the

limitation of correlation method, ICA method has been

developed to study brain functional connectivity, which

several distinct resting state networks (RSNs) inwhich distinct

brain areas exhibit consistent synchronization at very low

frequencies when at rest were detected and separated, on the

basis of their spatial patterns, voxel values selected reflect the

degree to which the time series of each voxel was correlated

with the mean time series of the RSNs. ICA method can

examine multiple functional networks connectivity simulta-

neously, but determining the optimal number of components

and separating noise related components are still challenging

tasks (Beckmann, DeLuca, Devlin, & Smith, 2005; Sheline &

Raichle, 2013).

Recently, graphical models have been introduced to study

brain connectivity, such as Lin, Meng, Karunanayaka, &

Holland (2011), developed a spectral graphical model

approach for learning brain connectivity network of Chil-

dren's Narrative Comprehension. Ng, Varoquaux, Poline, &

Thirion (2012), proposed a novel multimodal integration

approach based on sparse Gaussian graphical model for esti-

mating brain connectivity, casting functional connectivity

estimation as a sparse inverse covariance learning problem,

and adopt the level of sparse penalization on each connection

based on its anatomical capacity for functional interactions.

Ortiz et al. (2015) used sparse inverse covariance estimation

(SICE) method to learn undirected graphs in order to derive

functional and structural connectivity patterns from position

emission tomography (PET) data and segmented Magnetic

Resonance images (MRI) from the ADNI database. However,

most of these methods exist limitations, that make them

inadequate for studying AD brain connectivity, since little

prior knowledge (such aswhich brain regions are involved and

how they are connected) was available, but it was often

required in those methods (Huang et al., 2010).

The abnormal functional connectivity as a diagnose

biomarker has already shown its potential clinical value as

well as providing rich and sensitive markers for AD

(Damoiseaux, 2012). However, there are still some additional

issues that need to be addressed, e.g., the increased/decreased

functional connectivity of brain networks are well replicated

research, but the reduced functional connectivity rarely study.

Secondly, AD-related abnormalities functional connectivity

https://doi.org/10.1016/j.cortex.2019.04.026
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within the DMN are well replicated research findings(An-

drews-Hanna et al., 2007; Damoiseaux et al., 2007; Koch

et al., 2010; Sheline et al., 2010; Zhang et al., 2009), but the

abnormal functional connectivity and the pathologic changes

in ECNand FPN has been little investigated. Furthermore,

these functional networks (ECN,FPN) also have associated AD,

at least recent studies warrant these networks have signifi-

cant reduced functional connectivity (Agosta et al., 2012;

Andrews-Hanna et al., 2007; Sorg et al., 2007; Zhao, Lu,

Metmer, Li, & Lu, 2018). For example, Sorg et al. (2007) found

reduced connectivity in the superior parietal lobule (SPL) and

prefrontal cortex (PFC) in mild cognitive impairment (MCI).

The second one, Agosta et al. examined the DMN, ECN (frac-

tured into ECN and a few “fronto-parietal” networks) and

salience network in AD and MCI. In the DMN and frontopar-

ietal components, they found both reduced connectivity in

specific regions in AD compared to MCI and NC (Normal

controls) and reduced mean connectivity across the whole

component (Agosta et al., 2012; Zhao et al., 2018). In summary,

these results suggest that AD reduced functional connectivity

not only associated with DMN, but also associated with the

ECN and FPN. Therefore, exploring the functional connectivity

of ECN and FPN networks were have significant implications

for early diagnose AD.

In this paper, we used a “sparsity” constraint on the

maximum likelihood estimation (MLE) of inverse covariance

matrix to explore the functional connectivity in DMN, ECN

and FPN networks. Our experimental results showed this

method could reliable estimation of the functional connec-

tivity, and these functional networks have shown significant

increased/decreased functional connectivity. Furthermore,

experimental results also present that the AD patients have

reduced connectivity in the FPN, DMN and ECN. These results

possibly suggest AD is not only associated with DMN, but also

associated with other functional networks.
2. Materials and methods

In this section, we report howwe determined our sample size,

all data exclusions, all inclusion/exclusion criteria, whether

inclusion/exclusion criteria were established prior to data

analysis, all manipulations, and all measures in the study.

2.1. Participants

One hundred and nine cognitively normal elderly subjects

(CN) and one hundred and four subjects with AD dementia

(ranging in age from 55 to 90 years) participated in this study.

Normal Subjects: Mini-Mental State Examination (MMSE)

scores between 24 and 30 (inclusive), the CDR of 0, non-

depressed, non-MCI, and non-demented. AD Subjects:

MMSE scores between 20e26 (inclusive), the Clinical Dementia

Rating (CDR) of .5 or 1.0, and meets National Institute of

Neurological and Communicative Disorders and Stroke and

the Alzheimer’s Disease and Related Disorders Association

(NINCDS/ADRDA) criteria for probable AD. The subjects ob-

tained from the Alzheimer's disease Neuroimaging Initiative 2

(ADNI2) database (http://adni.loni.usc.edu/adni-go-adni-2-

clinical-data-available). The Alzheimer's Disease
Neuroimaging Initiative (ADNI) unites researchers with study

data as they work to define the progression of Alzheimer's
disease (AD). Access is contingent on adherence to the ADNI

Data Use Agreement and the publications' policies outlined in

the documents (http://adni.loni.usc.edu/data-samples/

access-data/). The application process includes acceptance

of the Data Use Agreement and submission of an online

application form. The application includes the investigators

institutional affiliation and the proposed uses of the ADNI

data. ADNI data may not be used for commercial products or

redistributed in any way. In this study, we use resting-state

functional MRI (fMRI) data of ADNI2, the ADNI2 resting state

fMRI data include 209 NC, 208 subjects with early stage mild

cognitive impairment (EMCI), 183 subjects in amore advanced

stage of MCI (LMCI), and 121 subjects with AD dementia. For

more detail information and inclusion criteria/exclusion

criteria on these subjects, see the https://adni.loni.usc.edu/

wp-content/uploads/2008/07/adni2-procedures-manual.pdf.

2.2. Imaging acquisition

MRI scans were conducted on a 3.0 T Philips MRI scanner. All

participants performed resting state Functional MRI scanning

(Field Strength ¼ 3.0 T; 8-channel head coil, Flip Angle ¼ 80.0�;
Matrix X ¼ 64.0 pixels; Matrix Y ¼ 64.0 pixels; Pixel Spacing

X ¼ 3.3125 mm; Pixel Spacing Y ¼ 3.3125 mm; Pulse

Sequence ¼ Gradient Recalled; Slices ¼ 6720.0; Slice

Thickness ¼ 3 mm; TE ¼ 30.0 msec; TR ¼ 3000.0 msec). Func-

tional MR images were acquired while at resting, to avoid

initiating goal-directed, attention-demanding activity during

the scanning sessions, subjects were instructed to keep their

eyes closed, and to remain awake.

2.3. Data preprocessing

The unprocessed images from MRI scanners inevitably

contain several types of spatial distortion, noise, artifacts, and

biases. To make best use of the ADNI2 datasets, it was critical

to compensate as much as possible for these distortions,

biases, and artifacts. Data preprocessingwere carried out with

FMRIB Software Library (FSL) tools (Jenkinson, Beckmann,

Behrens, Woolrich, & Smith, 2012; Smith et al., 2004;

Woolrich et al., 2009) and Data Processing & Analysis for

(Resting-State) Brain Imaging (DPABI) (Yan, Wang, Zuo, &

Zang, 2016). The preprocessing pipelines included: head mo-

tion correction by using MCFLIRT, non-brain removal by using

Brain Extraction Tool (BET), Spatial smoothing by using a

Gaussian kernel of full width at the half maximum (FWHM)

5 mm; Registration of each subject's FMRI data to MNI152

standard space was achieved by using FMRIB's Linear Image

Registration Tool (FLIRT) affine registration, then via de-

trended and band-pass filtered (.01e.08 HZ) to remove the

extremely low and high-frequency artifacts, and further

regressed out nuisance signals. The registered to MNI152

space FMRI data were partitioned via using the anatomically

labeled template (Tzourio-Mazoyer et al., 2002), and the whole

brain was divided into 116 regions: 90 regions in the cerebra

and 26 regions in the cerebella, finally extracted the mean

time series of the whole brain by averaging the fMRI time

series over all voxels in the regions.

http://adni.loni.usc.edu/adni-go-adni-2-clinical-data-available
http://adni.loni.usc.edu/adni-go-adni-2-clinical-data-available
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https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf
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2.4. Functional connectivity analysis via sparse inverse
covariance estimation

In this section, we adopt sparse inverse covariance estimation

(SICE) method for functional connectivity modeling, this

method also known as Gaussian graphical models or graph-

ical Lasso. This method imposes a “sparsity” constraint on the

maximum likelihood estimation (MLE) of inverse covariance

matrix, which leads to reliable estimation of the inverse

covariance with small sample sizes. Here, “small” means that

the sample size can be close to or even less than the number of

brain regionsmodeled. Using SICE tomodel brain connectivity

is appropriate because many past studies based on anatom-

ical brain datasets have shown that the true brain network is

sparse (K€otter& Stephan, 2003; Sojoudi, 2016; Sporns, Chialvo,

Kaiser, & Hilgetag, 2004; Yang et al., 2015). Hence, we intro-

duce this method to analyze functional connectivity.

In this study, we assume there are i brain regions to be

modeled, i.e., X ¼ fx1; :::; xig and follows a multivariate

Gaussian distribution. The measurement data for each region

is the regional time series. Let x1; x2; :::; xi � Nðm;PÞ2Rn where

xi,1� i � n, m2Rn is the mean, and
P

2Rn�n is the covariance

matrix, many applications require estimation the meanm, and

either the covariance
P

or its inverse
P�1, let Q ¼ S�1 and it is

also called the precision matrix. Both the mean vector m and

the covariance matrix
P

are often approximated using the

standard maximum likelihood estimation (MLE), which leads

to bm ¼ ð1=mÞPm
i¼0xi. The empirical covariance is denoted as S:

S ¼ 1
m

Xm
i¼0

ðxi � bmÞðxi � bmÞT (1)

which is also called the empirical covariance matrix. Specif-

ically, according to the MLE, it can be derived that maximum

log likelihood estimation of Q, and multivariate Gaussian

model can be obtained as follows:

bQ ¼ argmax
Q_0

ðlogðdetQÞ � trðSQÞÞ (2)

where Q and bQ denote inverse covariance matrix and its

estimation, S is the sample covariance matrix, detð ,Þ and trð ,Þ
denote the determinant and trace of amatrix. If the number of

subjects is smaller than the problem dimension, i.e., m < n

then S in (2) is rank deficient, whereas the true S is assumed to

be positive definite, hence full-rank, and estimate
P�1

assuming that it is sparse (Dempster, 1972, pp. 157e175).

Several existing literature in machine learning and statis-

tics naturally connects sparse precision matrices with

Gaussian graphical models (Dempster, 1972, pp. 157e175), and

it has motivated numerous application (Lauritzen, 1996). To

estimate sparse precisionmatrices for Gaussian distributions,

many methods in the past decade have been proposed based

on the sample covariance estimator, e.g., Banerjee, Ghaoui, &

d'Aspremont (2008), Yuan& Lin (2007) and Friedman, Hastie,&

Tibshirani (2008) take advantage of the Gaussian likelihood

proposed the graphic lasso (GLASSO) estimator by solving:

bQ ¼ argmax
Q_0

ðlogðdetQÞ � trðSQÞ � l
����Q��j1Þ (3)

where parameter l>0 is the regularization parameter. Solving

this problem can used GLASSO package developed by Zhao,
Liu, Roeder, Lafferty, & Wasserman (2012). Thus SICE finds

an estimation for the inverse covariance matrix (bQ) of the

brain regions connections by solving equation (3), where
����,��j1

denotes the sum of absolute values of all the entries in a

matrix.

In equation (3), when the value of l is smaller, the

constraint has less impacted, and the SICE becomes the usual

MLE. Conversely, the value of l becomes larger, the Q is esti-

mated by SICE has more influenced. This monotone property

has proved by Huang et al. (2010). On the other hand, a com-

mon characteristic of the SICE methods is that they are good

at discovering which entries in the inverse covariance matrix

are zero and which are non-zero, they may not be good at

estimating the magnitude of the non-zero entries due to the

“shrinking” effect. Therefore, SICE method may be more

appropriate to be used for identifying the inverse covariance

matrix structure. As a result, once an estimate Q is obtained

from SICE, we could use the information (i.e., zero and non-

zero entries) in to Q build a brain connectivity model (Huang

et al., 2010). Besides, if two brain regions are not connected

(there is not a path between them) in the connectivity model

at a certain l, they will never become connected as l goes

larger. This property can be derived structural and functional

connectivity models for different values of sparseness, cor-

responding to models with different strength of connections

(Huang et al., 2010; Levina, Rothman, & Zhu, 2008; Sun et al.,

2009).
3. Results

3.1. Functional connectivity analysis via sparse inverse
covariance estimation

In this study, we used SICE evaluated functional connectivity

of different brain regions. To compare the functional con-

nectivity differences between SICE and other state-of-art

methods, the four different functional connectivity methods

matrices are shown in Fig. 1. The first row shows Pearson

correlation, Kendall rank correlation, sparse representation,

and SICE four different methods functional connectivity

matrices of Normal Controls. The second row show corre-

sponding functional connectivity matrices of AD patients.

From these four different correlationmatrices, we can see that

Pearson correlation, Kendall rank correlation matrix can

capture pairwise ROI interaction of 116 regions obviously, and

have a great quantity non-zero elements in both of these

matrices. From Fig. 1, we can observed sparse representation

[Fig. 1(c) and (g)] that the connectivity are relatively sparsity

and have fewer non-zero elements. However, compared with

SICE [Fig. 1(d) and (h)] in Fig. 1, we can observe that SICEmatric

not only even sparsity, but also could keep main connections.

In addition, although Pearson correlation and Kendall rank

correlation matrices also could capture pair-wise ROI con-

nections strength, these correlation matrices are not sparsity.

Furthermore, these two methods exist plenty of irrelevant

functional connectivity that results in difficulty to distinguish

which functional connectivity is important. For example, in

Fig. 1(b) and (f), both normal controls and AD have plenty of

relevant connections, its difficulty to identify the significant

https://doi.org/10.1016/j.cortex.2019.04.026
https://doi.org/10.1016/j.cortex.2019.04.026


Fig. 1 e Comparison two group (NC and AD) weight matrices of the same subject estimated by four different methods.

c o r t e x 1 2 0 ( 2 0 1 9 ) 3 6e4 840
functional connectivity. Hence, these methods can't discrim-

inate main changed functional connectivity between normal

control and AD.

In addition, evaluating functional connectivity using SICE

method relates to the parameter l selection issues, the pa-

rameters l has significant impact for functional connectivity.

To tune the parameters of the SICE method, in this work we

calculate the different values of l, we selected parameters

range between [.02e.80], when the l ¼ 0:02, the quantity of

noise (weak connectivity) are kept in normal control and AD.

As l increasing, the noise would be reduced, when the l ¼ 0:2,

the mainly connections are retained and the weak connec-

tives are removed. Hence, in ideal case, l ¼ 0:2 was selected in

this study.

3.2. Functional connectivity changes in ECN and FPN

In this section, we mainly investigate the functional connec-

tivity changes in large-scale networks of ECN and FPN. As

shown in Fig. 2, the left superior frontal gyrus (SFGmed.L)

[Fig. 2(d)] and left thalamus (THA.L) regions [Fig. 2(f)] of ECN

showed increased functional connectivity. In contrast, the left

anterior cingulate (ACG.L) [Fig. 2(b)] region of ECN has shown

decreased functional connectivity compared with NC

[Fig. 2(a)]. ECN was typically composed of the anterior cingu-

late cortex (ACC), anterior prefrontal cortex (APFC), dorsolat-

eral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex

(VLPFC), dorsomedial prefrontal cortex (DPFC), left inferior

parietal ((IPL.L), and the left fronto-insula were reported as

brain regions of ECN in healthy subjects (Seeley et al., 2007;

Vincent, Kahn, Snyder, Raichle, & Buckner, 2008). Our results

[Fig. 2(d)] show increased functional connectivity in the su-

perior frontal gyrus and thalamus, the functional connectivity

changes maybe indicate these regions occur to damages,

which results in functional connectivity becomes increased.

On the other hand, in this study the left anterior cingulate

(ACG.L) [Fig. 2(b)] region of ECN has decreased functional

connectivity.
Compared with normal controls, partial regions of FPN

showed increased functional connectivity in AD patients. As

show in Fig. 3, the results showed the Superior Parietal Gyrus

(SPG) region [Fig. 3(b)] and left Inferior parietal (IPL.L) region

[Fig. 3(d)] of FPN have increased functional connectivity (Fig. 3)

in AD patients, however, the left supramarginal gyrus (SMG.L)

regions [Fig. 3(f)] showed decreased functional connectivity

compared with normal control [Fig. 3(e)]. More interestingly,

compared with healthy controls, AD patient's left FPN showed

a significantly increased connectivity of in the left IPL region.

3.3. Reduced functional connectivity in large-scale
functional connectivity networks

Compared with normal control (NC), AD patients showed the

reduced functional connectivity, the detailed results can be

seen in Fig. 4. Fig. 4(a) show the NC functional connectome,

Fig. 4(b) show the AD patients functional connectome figures.

Here, we quantitative analysis the reduced functional con-

nectivity, when the parameter l ¼ 0:01, the reduced func-

tional connectivity not significantly. Fig. 4(c) and (d) show

functional connectivity NC and AD respectively when the

parameter l ¼ 0:1. It is notice that functional connectivity

compared Fig. 4(c) with (a) didn't significant reduced, which

suggesting these functional connectivity haven't significant

reduced in NC with the parameters changes. Conversely,

Fig. 4(d) show reduced functional connectivity. These reduced

functional connectivity included left posterior cingulate gyrus

(PCG.L), hippocampus (HIP.L), left anterior cingulate (ACG.L),

middle frontal gyrus (MFG.R), supramarginal gyrus (SMG.L),

middle temporal gyrus (TPOmid.L, TPOmid.R), superior tem-

poral gyrus (TPOsup.L, TPOsup.R), thalamus (THA.L), para-

central lobule (PCL.L, PCL.R), precuneus (PCUN.L), left inferior

parietal (IPL.L), middle temporal gyrus (MTG.L), middle frontal

gyrus (ORBmid.L), precentral gyrus(PreCG.L) and superior

frontal gyrus (ORBsup.L). The reduced functional connectivity

of PCG.L, PCUN.L, IPL.L andHIP.Lweremainly cover the area of

DMN. The, ACG.L regions is located on anterior cingulate

https://doi.org/10.1016/j.cortex.2019.04.026
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cortex, this cortex is the main areas of ECN, SMG.L and IPL.L

(overlap with DMN) are the main areas of FPN. Furthermore,

the reduced functional connectivity also found in TPOmid.L,

TPOsup.L, TPOsup.R, ORBmid.L PreCG.L and ORBsup.L areas in

Fig. 4(d).

To quantitative analysis changed functional connectivity,

Fig. 5 shows reduced and preserved functional connectivity.

Fig. 5(b) shows AD patient preserved functional connectivity

when the parameter l ¼ 0:5, these functional connectivity

also can be found in Fig. 5(a), that suggesting these functional

connectivity are common connections are preserved.

Conversely, comparison Fig. 5(a) and (b), we found the AD

patients have reduced functional connectivity included PCL.L,

PCUN.L, PCUN.R, SMG.L, SMG.R, SFGdor.L, ORBsup.L,
ORBsup.R, ACG.L, andACG.R.Most interesting, we found these

reduced regions are mainly cover the DMN, ECN and FPN

networks. The functional connectivity of posterior cingulate

cortex (PCC) and parahippocampal gyrus reduced in AD pa-

tients. In summary, we found reduced functional connectivity

not only in DMN, but also found both SFGmed.L and ACG.R in

ECN, and the reduced connections of SMG.L in FPN.
4. Discussion

In this study, we adopt SICE approach to investigate the func-

tional connectivity of large-scale functional connectivity net-

works of ECN and FPN. Our experimental results have shown

https://doi.org/10.1016/j.cortex.2019.04.026
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subject, (b) is the ACG.L region of AD, (c) is the IPL.L region of Normal subject, (d) is the IPL.L region of AD, (e) is the SMG.L

region of normal subject and (f) is the SMG.L regions of AD.
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except for DMN, AD is also associated with altered functional

connectivity networks of ECN and FPN, and these networks

demonstrate increased/decreased and reduced functional con-

nectivity. The reduced functional connectivity included PCG.L,

HIP.L, ACG.L, MFG.L, MFG.R, SMG.L, TPOmid.L, TPOmid.R, TPO-

sup.L, TPOsup.R, THA.L, PCL.L, PCL.R, PCUN.L, IPL.L, MTG.L,

ORBmid.L, PreCG.L and ORBsup.L. These reduced functional

connectivity regionscoverDMN, ECNandFPN. Furthermore, the

left superior frontal gyrus (SFGmed.L) and thalamus (THA.L)

regions of ECN showed increased functional connectivity, the

left anterior cingulate (ACG.L) region of ECN showed decreased

functional connectivity compared with NC. On the other hand,
compared with normal controls, the Superior Parietal Gyrus

(SPG) regions and part paracentral Lobule (PCL.L) showed

increased functional connectivity, theSMG.L regionshas shown

decreased functional connectivity within the FPN. These

changed functional connectivity possibly as a potential nonin-

vasive biomarker to diagnose incipient Alzheimer's disease.

4.1. The increased/decreased functional connectivity of
ECN and FPN

The large-scale functional networks have reported which

include Visual network, Default Mode Network (DMN),

https://doi.org/10.1016/j.cortex.2019.04.026
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Cerebellum,Sensorimotor,Auditory,ExecutiveControlNetwork

(ECN) and frontoparietal Network (FPN). In this study, the

increased functional connectivity were observed in the left su-

perior frontal gyrus (SFGmed.L) and left thalamus (THA.L) re-

gions of ECN. In contrast, the decreased functional connectivity
wereobserved inthe leftanteriorcingulate (ACG.L) regionofECN

in AD, which are coincided with AndrewseHanna report

(Andrews-Hanna et al., 2007). Previous studies showed the

anterior cingulate cortex (ACG) was engaged in regulating

emotional andcognitive behavior. ThedamagedACGregioncan

https://doi.org/10.1016/j.cortex.2019.04.026
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Fig. 5 e (a) Preserved functional connectivity of Normal Subject based on SICE, (b) Preserved functional connectivity of AD

based on SICE.

c o r t e x 1 2 0 ( 2 0 1 9 ) 3 6e4 844
lead to personality changes, impulsivity and impaired social

behavior. The ACG atrophy was a feature of certain neurode-

generativediseases, suchasfrontotemporaldementia (FTD)and

Parkinson's disease dementia (PDD). Furthermore, these regions

have several cognition paradigms, actioneinhibition, emotion,

and perception function. Although these regions have an

increased/decreased connectivity, the pathology was still not

clear, these changed functional connectivity could be indicate

these regions occur to damage. The ECN mainly includes the

dorsolateral prefrontal cortex (DLPFC) and the posterior parietal

cortex (PPC) (Damoiseaux et al., 2006). The frontal lobe is

responsible for logic, regulating behavior, complex planning,

and learning. Alzheimer's disease could be damaged the frontal

lobewith thediseaseprogresses.Assuch, complex taskssuchas

driving, cooking, or multi-step planning may become severely

impaired by Alzheimer's disease. Moreover, the damaged of the

frontal lobe could be results in the loss of motivation and slug-

gishness. It plays a key role in active maintenance and manip-

ulation of information in working memory, and decision-

making in the context of goal-directed behavior (Petrides,

2005).The previous researches showed that DMN and ECN

were affectedandassociatedwithAD. For example, Agostaet al.

(2012) reportedADpatientsshowedasignificant increasedmean

connectivity of the executive control network compared with

NC. Specifically, Agosta et al., usedvoxel-basedanalysis showed

that AD patients had an increased executive control network

connectivity in the dorsomedial and bilateral dorsolateral PFC

relative to NC; when compared with amnestic Mild Cognitive

Impairment (aMCI) patients, these regions of increased con-

nectivity were more extensive. Moreover, Balachandar et al.

(2015) also reported increased connectivity of ECN in mild AD
patients. In our study, we also found similar results that the left

superior frontal gyrus (SFGmed.L) [Fig. 2(d)] and thalamus

(THA.L) regions [Fig.2(f)]ofECNinADpatient.Ourresults inFig. 2

also confirmed that enhancedconnectionphenomenaoccurs in

themedialparietal cortex,dorsolateralprefrontal cortex (DLPFC)

and the posterior parietal cortex (PPC) regions.

In this study, the Superior Parietal Gyrus (SPG) regions and

part paracentral Lobule (PCL.L) of FPN has shown increased

functional connectivity (Fig. 3), and the SMG.L region has

shown decreased functional connectivity in AD patients.

These results are consistent with the previous results (Agosta

et al., 2012). In the FPN, AD compared with NC also showed an

increased connectivity in the right supramarginal gyrus. The

detailed frontoparietal network (FPN) (Vincent et al., 2008) is

composed of the anterior prefrontal cortex (aPFC), dorsolat-

eral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC),

anterior insula, anterior inferior parietal lobule (aIPL), and

caudate (Vincent et al., 2008), which these areas correspond

several cognition/language paradigms. Previous works

(Agosta et al., 2012) shown that the left FPN showed a signif-

icantly increased connectivity in the left IPL in AD patients

comparedwithNC. On the other hand, comparedwith healthy

controls, AD experienced a decreased mean connectivity in

the left frontoparietal network, particularly at the level of the

left inferior temporal gyrus (Agosta et al., 2012). In addition,

experimental results indicated that in the SMG.L region of

frontoparietal networks have decreased function connectivity

in AD patients, this result is in line with Anne Hafkemeijer

et al. report, which released results showed decreased con-

nectivity between precuneus and right frontoparietal network

in AD patient (Hafkemeijer et al., 2017). Furthermore, although

https://doi.org/10.1016/j.cortex.2019.04.026
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Agosta et al. report that the mean connectivity in the right

frontoparietal network did not changes, the SMG.L region has

shown decreased functional connectivity in AD patients were

found in our study.

4.2. The reduced functional connectivity of ECN and FPN

In our present study, we specifically examine reduced func-

tional connectivity of ECN and FPN in AD patients. The ACG.L

region of ECN, SMG.L and IPL.L (overlap with DMN) areas of

FPN were found significantly reduced functional connectivity.

The executive control network (ECN) is critical for guidance of

thought and behavior. Most previous studies (Agosta et al.,

2012; Anor et al., 2016, pp. P1068eP1069; Seeley et al., 2007;

Sorg et al., 2007) found reduced connectivity of the left exec-

utive control network (Left ECN) in AD patients, these results

suggest that altered connectivity may have an effect on the

executive control network in AD patients. Our study also

found that ACG.L region of executive control network (ECN)

has obvious reduced connectivity in AD patients. Previous

studies also showed reduced connectivity in the DMN and

central executive control network (ECN) hubs of MCI patients

(Agosta et al., 2012; Sorg et al., 2007). Agosta et al., used voxel-

based analysis of the FPN, the results shownAD patients had a

significantly reduced connectivity in the right middle frontal

gyrus compared with NC, right orbitofrontal gyrus, inferior

frontal gyrus, and middle frontal gyrus compared with aMCI.

Furthermore, ROI-based analysis also detected a significantly

reduced connectivity in left inferior temporal gyrus of fron-

toparietal network (FPN) in AD patients. In summary, our

found reduced functional connectivity are in line with the

previous studies.

In this study, our experimental results showed signifi-

cantly reduced functional connectivity both SMG.L and IPL.L

(overlap with DMN) areas in FPN. The left Supramarginal

gyrus (SMG.L) is part of the somatosensory association cortex,

which interprets tactile sensory data and is involved in

perception of space and limbs location. It is also involved in

identifying postures and gestures of other people, and is a part

of the mirror neuron system. The right portion of the supra-

marginal gyrus plays a central role in controlling our empathy

towards other people. When this structure isn't working

properly or we have to make very quick judgments, our

empathy becomes severely limited. The changed functional

connectivity may result in the loss of motivation or drive,

sluggishness and the gradual loss of inhibition and impulsive

behavior, the reduced functional connectivity may cause the

loss of partly regular function for AD patients. Moreover,

Inferior parietal lobule (IPL) has been involved in the percep-

tion of emotions in facial stimuli, and interpretation of sen-

sory information. The Inferior parietal lobule is concerned

with language, mathematical operations, and body image,

particularly the supramarginal gyrus and the angular gyrus

(Radua et al., 2010). In this study, frontoparietal networks

(FPN) showed reduced connectivitymay lead to dysfunction of

logic, regulating behavior, complex planning, and learning.

Inaddition to the reduced functional connectivityofECNand

FPN, we also found other regions exectience reduced functional

connectivity, e.g., PCG.L, HIP.L, MFG.L MFG.R, TPOmid.L TPO-

mid.R,TPOsup.L TPOsup.R, THA.L, PCUN.L, MTG.L, ORBmid.L,
PreCG.L and ORBsup.L. In these regions, the PCG.L, HIP.L and

PCUN.L compose the default mode network (DMN). The poste-

rior and precuneus of the DMN, which have reduced connec-

tivity and lack of deactivation during cognitive tasks in the early

phases of the disease (Buckner et al. 2008; Greicius, Srivastava,

Reiss, & Menon, 2004), our experimental results proved this

characteristic. Furthermore, AndrewseHanna et al. (Andrews-

Hanna et al., 2007) also found a significantly reduced func-

tional connectivity between anterior and posterior hubs of the

DMN(medialprefrontal cortexandPCC). Previous study showed

that AD reduced functional connectivity within a specific

network of regions that includes the posterior cingulate and

lateral temporoparietal cortices. For example, Greicius et al.

demonstrated that AD patients performed a simple motor task

had reduced intra-subject functional connectivity within the

default-modenetwork(DMN)dthat includes posterior cingulate

cortex, temporoparietal junction, and hippocampus(Greicius

et al., 2004). Moreover, Wang et al. (2006) showed altered hip-

pocampal connectivity to several neocortical regions in the

early stages of AD. In our current study, we achieved results

shown except for DMN, ECN and FPN that other regions have

reduced connectivity.

4.3. The limitations and in future directions

In this work, our results demonstrated the changed functional

connectivity in DMN, ECN and FPN. However, there are also

some challenges associated with the current study. First, the

current study only adopts resting-state data and relatively

short sample of patients. As a consequence, there is still a

need for more subjects to be performed, which will also take

into account factors that may have influenced our results.

Secondly, although our results indicate these changed func-

tional connectivity association with the DMN, ECN and FPN,

we must acknowledge that pathological mechanism of the

functional connectivity reduction and change for AD is still

unknown. Finally, besides ADNI2 dataset, other fMRI datasets

should be applied to examine the results of current study.

Anyway, the results presented here inspired us to further

study those changed functional connectivity and other larger

scale functional networks. Moreover, these are changed

functional connectivity networks may help us better under-

stand and diagnoses AD disease.
5. Conclusion

In this paper, we employ SICE approach to investigate the

changed functional connectivity of large-scale functional

connectivity networks (ECN, FPN). Based on the Alzheimer's
disease Neuroimaging Initiative (ADNI 2) database, our

experimental results show besides DMN, several other func-

tional networks. e.g., frontoparietal network (FPN), executive

control network (ECN) also have demonstrated increased/

decreased functional connectivity. Moreover, our experi-

mental results the AD patients have significantly reduced

connectivity in the FPN, DMN and ECN. These conclusions

suggest AD is not only associated with DMN, but also associ-

ated with other functional networks, and the results also

validate these functional networks may sometimes work
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together to perform tasks. These changed functional con-

nectivity in disease progression and investigating the very

early stage of AD may be helpful to understand changes that

take place during the entire disease trajectory, and improve

our ability to appropriately classify normal subjects and AD.

Ultimately, allow us to use those changed functional con-

nectivity as a potential noninvasive biomarker to diagnose

incipient Alzheimer's disease.
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